Convex conditions for the stability analysis and control of linear aperiodic impulsive systems with applications

Corentin Briat

GT Shy, ENSTA, Paris, France - 10/11/2015
Introduction

Stability of impulsive systems

Stabilization of impulsive systems

Applications

Conclusion
Impulsive systems

Introduction

Stability of impulsive systems

Stabilization of impulsive systems

Applications

Conclusion

Impulsive systems

Linear case

\[
\begin{aligned}
\dot{x}(t) &= Ax(t), \quad t \notin \{t_k\}_{k \in \mathbb{N}_0} \\
x(t) &= Jx(t^-), \quad t \in \{t_k\}_{k \in \mathbb{N}_0} \\
x(0) &= x_0
\end{aligned}
\]

where \(x(t^-) = \lim_{s \uparrow t} x(s) \).

- A continuous part
- A discrete part
- A set of impulse instants \(\{t_k\}_{k \in \mathbb{N}_0}, t_0 = 0 \), at which the jump rule applies

Jumping rule

- Time-dependent jumping instants (external)
- State-dependent jumping instants, e.g. when \(x \) enters some sets (internal)
• Stability depends on the matrices of the system but also on the sequence of impulse instants \(\{t_k\}_{k \in \mathbb{N}_0} \).

• Here the system is stable when \(t_{k+1} - t_k = 0.3 \) and unstable when \(t_{k+1} - t_k = 0.6 \).
• Stability depends on the matrices of the system but also on the sequence of impulse instants \(\{t_k\}_{k \in \mathbb{N}_0} \).

• Here the system is stable when \(t_{k+1} - t_k = 0.3 \) and unstable when \(t_{k+1} - t_k = 0.6 \).

• How can we characterize stability in an efficient/accurate/tractable way?
- Stability depends on the matrices of the system but also on the sequence of impulse instants \(\{t_k\}_{k \in \mathbb{N}_0} \).
- Here the system is stable when \(t_{k+1} - t_k = 0.3 \) and unstable when \(t_{k+1} - t_k = 0.6 \).

- How can we characterize stability in an efficient/accurate/tractable way?
- How can we derive tractable conditions for control design?
Stability of impulsive systems

Introduction

Corentin Briat
Department of Biosystems
Science and Engineering

Stability analysis and stabilization of linear aperiodic impulsive systems
Dwell-times

Definition
The dwell-time T_k is defined as $T_k = t_{k+1} - t_k$, i.e. $t_{k+1} = t_k + T_k$.

Dwell-times

Definition
The dwell-time T_k is defined as $T_k = t_{k+1} - t_k$, i.e. $t_{k+1} = t_k + T_k$.

Average dwell-time

1. The average number of impulses in any time interval
2. Asymptotic notion

Dwell-times

Definition
The dwell-time T_k is defined as $T_k = t_{k+1} - t_k$, i.e. $t_{k+1} = t_k + T_k$.

Average dwell-time

- The average number of impulses in any time interval
- Asymptotic notion

Minimum/maximum/range dwell-time

- Minimum dwell-time: $T_k \geq \bar{T}$, for some $\bar{T} > 0$, $k \in \mathbb{N}_0$
- Maximum dwell-time: $T_k \leq \bar{T}$, for some $\bar{T} > 0$, $k \in \mathbb{N}_0$
- Range dwell-time: $T_k \in [T_{min}, T_{max}]$, for some $0 < T_{min} \leq T_{max} < \infty$, $k \in \mathbb{N}_0$

Theorem \(^{(1)}\)

Assume that there exist \(P \in \mathbb{S}^n_\succ 0\) and scalars \(c > 0, d < 0\), such that

\[
A^T P + PA + cP \prec 0
\]
\[
J^T P J - e^{-d} P \prec 0.
\]

Then, the system is stable provided that the number of impulses \(N(t, s)\) over the interval \((s, t]\) satisfies

\[
N(t, s) \leq \frac{t - s}{\tau^*} + N_0, \quad \text{for all } t \geq s.
\]
Theorem (1)

Assume that there exist $P \in \mathbb{S}_n^+ > 0$ and a scalar $\bar{T} > 0$ such that the conditions

$$A^T P + PA \prec 0$$
$$J^T e^{A^T \bar{T}} P e^{A\bar{T}} J - P \prec 0$$

hold.

Then, the system is stable provided that $T_k \geq \bar{T}$; i.e. $t_{k+1} \geq t_k + \bar{T}$, $k \in \mathbb{N}_0$.

\[\text{REFERENCES}\]

Theorem (1)
Assume that there exist $P \in \mathbb{S}_+^n$ and a scalar $\bar{T} > 0$ such that the conditions

$$
A^T P + PA < 0
$$

$$
J^T e^{A^T \bar{T}} Pe^{A \bar{T}} J - P < 0
$$

hold.
Then, the system is stable provided that $T_k \geq \bar{T}$; i.e. $t_{k+1} \geq t_k + \bar{T}$, $k \in \mathbb{N}_0$.

Remark

- A must be Hurwitz
- Stable continuous-time dynamics, potentially unstable discrete-time dynamics
- If we let $\bar{T} \to 0$, then we obtain a condition for arbitrary impulse times (but we must deal with Zeno behavior)
- Easy to check

Discrete-time system

We can associate the following discrete-time system with the initial impulsive system

\[x(t_{k+1}^-) = e^{AT_k} J x(t_k^-), \quad k \in \mathbb{N}_0 \]

(4)

where \(t_0 = 0 \) and \(T_k \in [T_{min}, T_{max}] \).
Discrete-time system
We can associate the following discrete-time system with the initial impulsive system

\[x(t_{k+1}^-) = e^{AT_k} J x(t_k^-), \ k \in \mathbb{N}_0 \]

(4)

where \(t_0 = 0 \) and \(T_k \in [T_{min}, T_{max}] \).

Theorem (1)
Assume that there exist \(P \in \mathbb{S}_>^n \) such that the condition

\[J^T e^{A^T \theta} P e^{A \theta} J - P < 0 \]

(5)

holds for all \(\theta \in [T_{min}, T_{max}] \).

Then, the system is stable provided that \(T_k \in [T_{min}, T_{max}], k \in \mathbb{N}_0 \).
Discrete-time system

We can associate the following discrete-time system with the initial impulsive system

\[x(t_{k+1}^-) = e^{AT_k}Jx(t_k^-), \quad k \in \mathbb{N}_0 \]

where \(t_0 = 0 \) and \(T_k \in [T_{min}, T_{max}] \).

Theorem (1)

Assume that there exist \(P \in \mathbb{S}^n_{>0} \) such that the condition

\[J^T e^{A^T \theta} P e^{A \theta} J - P \prec 0 \]

holds for all \(\theta \in [T_{min}, T_{max}] \).

Then, the system is stable provided that \(T_k \in [T_{min}, T_{max}], \ k \in \mathbb{N}_0 \).

Remarks

- Robust feasibility problem (due to parametric dependence)
- Not easy to check since non-convex in \(\theta \) . . .
Difficulties & Proposed Solution

Difficulties

- Parameter dependence is at the exponential (not convenient)

\[J^T e^{A^T \theta} P e^{A\theta} J - P \prec 0, \quad \theta \in [T_{min}, T_{max}] \]

- Difficult to extend to uncertain systems

\[J^T e^{(A+\Delta)^T T} P e^{(A+\Delta)T} J - P \prec 0 \]

- Control design is non-convex

\[J^T e^{(A+BK)^T T} P e^{(A+BK)T} J - P \prec 0 \]
Difficulties & Proposed Solution

Difficulties

- Parameter dependence is at the exponential (not convenient)
 \[J^T e^{A^T \theta} P e^{A \theta} J - P < 0, \quad \theta \in [T_{min}, T_{max}] \]

- Difficult to extend to uncertain systems
 \[J^T e^{(A+\Delta)^T \bar{T}} P e^{(A+\Delta)\bar{T}} J - P < 0 \]

- Control design is non-convex
 \[J^T e^{(A+BK)^T \bar{T}} P e^{(A+BK)\bar{T}} J - P < 0 \]

Getting rid of exponential terms

- Looped-functionals\(^a,\(^b\)
- Clock-dependent Lyapunov functions\(^c\)

\(^c\) C. Briat. Convex conditions for robust stability analysis and stabilization of linear aperiodic impulsive and sampled-data systems under dwell-time constraints, *Automatica*, 2013
Convex conditions for periodic impulses

Theorem

Let us consider an impulsive system \((A, J)\) with periodic impulses, i.e. \(T_k = \bar{T}, k \in \mathbb{N}\). Then, the following statements are equivalent:

(a) The impulsive system with \(\bar{T}\)-periodic impulses is asymptotically stable.
Theorem

Let us consider an impulsive system \((A, J)\) with periodic impulses, i.e. \(T_k = \bar{T}, k \in \mathbb{N}\). Then, the following statements are equivalent:

(a) The impulsive system with \(\bar{T}\)-periodic impulses is asymptotically stable.

(b) There exists a matrix \(P \in \mathbb{S}^n_{>0}\) such that the LMI

\[
J^T e^{AT \bar{T}} P e^{AT} J - P \prec 0
\]

holds.
Theorem

Let us consider an impulsive system \((A, J)\) with periodic impulses, i.e. \(T_k = \bar{T}, k \in \mathbb{N}\). Then, the following statements are equivalent:

(a) The impulsive system with \(\bar{T}\)-periodic impulses is asymptotically stable.

(b) There exists a matrix \(P \in \mathbb{S}_n^+\) such that the LMI

\[
J^T e^{A^T \bar{T}} P e^{A \bar{T}} J - P \prec 0
\]

holds.

(c) There exist a differentiable matrix function \(R : [0, \bar{T}] \rightarrow \mathbb{S}^n\), \(R(\bar{T}) \succ 0\), and a scalar \(\varepsilon > 0\) such that the LMIs

\[
A^T R(\tau) + R(\tau) A + \dot{R}(\tau) \leq 0 \quad \text{and} \quad J^T R(0) J - R(\bar{T}) + \varepsilon I \leq 0
\]

hold for all \(\tau \in [0, \bar{T}]\).
Theorem
Let us consider an impulsive system \((A, J)\) with periodic impulses, i.e. \(T_k = \bar{T}, k \in \mathbb{N}\).
Then, the following statements are equivalent:

(a) The impulsive system with \(\bar{T}\)-periodic impulses is asymptotically stable.

(b) There exists a matrix \(P \in \mathbb{S}_n^+\) such that the LMI

\[
J^T e^{A^T \bar{T}} P e^{A \bar{T}} J - P \prec 0
\]

holds.

(c) There exist a differentiable matrix function \(R : [0, \bar{T}] \mapsto \mathbb{S}_n^+, R(\bar{T}) \succ 0\), and a scalar \(\varepsilon > 0\) such that the LMIs

\[
A^T R(\tau) + R(\tau) A + \dot{R}(\tau) \leq 0 \quad \text{and} \quad J^T R(0) J - R(\bar{T}) + \varepsilon I \leq 0
\]

hold for all \(\tau \in [0, \bar{T}]\).

(d) There exist a differentiable matrix function \(S : [0, \bar{T}] \mapsto \mathbb{S}_n^+, S(0) \succ 0\), and a scalar \(\varepsilon > 0\) such that the LMIs

\[
A^T S(\tau) + S(\tau) A - \dot{S}(\tau) \leq 0 \quad \text{and} \quad J^T S(\bar{T}) J - S(0) + \varepsilon I \leq 0
\]

hold for all \(\tau \in [0, \bar{T}]\).
Theorem
Let us consider an impulsive system \((A, J)\). Then, the following statements are equivalent:

(a) There exists a matrix \(P \in \mathbb{S}_n^{>0}\) such that the LMI

\[
J^T e^{A^T \theta} P e^{A \theta} J - P < 0
\]

holds for all \(\theta \in [T_{\text{min}}, T_{\text{max}}]\).
Theorem

Let us consider an impulsive system \((A, J)\). Then, the following statements are equivalent:

(a) There exists a matrix \(P \in \mathbb{S}_+^n\) such that the LMI

\[
J^T e^{A^T \theta} P e^{A \theta} J - P \preceq 0
\]

holds for all \(\theta \in [T_{min}, T_{max}]\).

(b) There exist a differentiable matrix function \(R : [0, T_{max}] \mapsto \mathbb{S}^n, R(0) > 0, \) and a scalar \(\varepsilon > 0\) such that the LMIs

\[
A^T R(\tau) + R(\tau) A - \dot{R}(\tau) \preceq 0
\]

and

\[
J^T R(\theta) J - R(0) + \varepsilon I \preceq 0
\]

hold for all \(\tau \in [0, T_{max}]\) and all \(\theta \in [T_{min}, T_{max}]\).
Theorem

Let us consider an impulsive system \((A, J)\). Then, the following statements are equivalent:

(a) There exists a matrix \(P \in \mathbb{S}_+^n\) such that the LMI

\[
J^T e^{A^T \theta} Pe^{A\theta} J - P < 0
\]

holds for all \(\theta \in [T_{\text{min}}, T_{\text{max}}]\).

(b) There exist a differentiable matrix function \(R : [0, T_{\text{max}}] \mapsto \mathbb{S}^n\), \(R(0) > 0\), and a scalar \(\varepsilon > 0\) such that the LMIs

\[
A^T R(\tau) + R(\tau) A - \dot{R}(\tau) \preceq 0
\]

and

\[
J^T R(\theta) J - R(0) + \varepsilon I \preceq 0
\]

hold for all \(\tau \in [0, T_{\text{max}}]\) and all \(\theta \in [T_{\text{min}}, T_{\text{max}}]\).

Moreover, when one of the above statements holds, then the aperiodic impulsive system with ranged dwell-time \(T_k \in [T_{\text{min}}, T_{\text{max}}]\) is asymptotically stable.
Theorem (Minimum Dwell-Time)

Let us consider an impulsive system \((A, J) \). Then, the following statements are equivalent:

(a) There exists a matrix \(P \in \mathbb{S}_+^n \) such that the LMIs

\[
A^T P + PA < 0 \quad \text{and} \quad J^T e^{A^T \bar{T}} P e^{A \bar{T}} J - P < 0
\]

hold.
Theorem (Minimum Dwell-Time)

Let us consider an impulsive system \((A, J)\). Then, the following statements are equivalent:

(a) There exists a matrix \(P \in \mathbb{S}^n_{>0}\) such that the LMIs

\[
A^T P + PA < 0 \quad \text{and} \quad J^T e^{A^T \bar{T}} Pe^{A\bar{T}} J - P < 0
\]

hold.

(b) There exist a differentiable matrix function \(R : [0, \bar{T}] \mapsto \mathbb{S}^n\), \(R(0) > 0\), and a scalar \(\varepsilon > 0\) such that the LMIs

\[
A^T R(0) + R(0) A < 0
\]

\[
A^T R(\tau) + R(\tau) A - \dot{R}(\tau) \leq 0 \quad \text{and} \quad J^T R(\bar{T}) J - R(0) + \varepsilon I \leq 0
\]

hold for all \(\tau \in [0, \bar{T}]\).
Convex conditions for minimum dwell-time

Theorem (Minimum Dwell-Time)

Let us consider an impulsive system (A, J). Then, the following statements are equivalent:

(a) There exists a matrix $P \in \mathbb{S}_n^+$ such that the LMIs

\[A^T P + P A < 0 \quad \text{and} \quad J^T e^{A^T \bar{T}} P e^{A \bar{T}} J - P < 0 \]

hold.

(b) There exist a differentiable matrix function $R : [0, \bar{T}] \rightarrow \mathbb{S}_n$, $R(0) \succ 0$, and a scalar $\varepsilon > 0$ such that the LMIs

\[A^T R(0) + R(0) A < 0 \]
\[A^T R(\tau) + R(\tau) A - \dot{R}(\tau) \leq 0 \quad \text{and} \quad J^T R(\bar{T}) J - R(0) + \varepsilon I \leq 0 \]

hold for all $\tau \in [0, \bar{T}]$.

Moreover, when one of the above statements holds, the impulsive system is asymptotically stable under minimum dwell-time \bar{T}, i.e. for any sequence $\{t_k\}_{k \in \mathbb{N}}$ such that $T_k \geq \bar{T}$.
Pros and cons

Benefits

- Convex in the matrices of the system → robustness analysis possible
Pros and cons

Benefits
- Convex in the matrices of the system \rightarrow robustness analysis possible
- Convex in the matrices of the system \rightarrow control design possible
Pros and cons

Benefits

- Convex in the matrices of the system \rightarrow robustness analysis possible
- Convex in the matrices of the system \rightarrow control design possible
- Applicable to systems with time-varying matrices and to nonlinear (polynomial) systems
Pros and cons

Benefits

- Convex in the matrices of the system → robustness analysis possible
- Convex in the matrices of the system → control design possible
- Applicable to systems with time-varying matrices and to nonlinear (polynomial) systems

Drawbacks

- Infinite-dimensional LMI problems
Pros and cons

Benefits

- Convex in the matrices of the system → robustness analysis possible
- Convex in the matrices of the system → control design possible
- Applicable to systems with time-varying matrices and to nonlinear (polynomial) systems

Drawbacks

- Infinite-dimensional LMI problems
- Needs relaxation (piecewise linear approximation or polynomial functions (SOS))
Let $R(\tau)$ and $\Gamma(\tau)$ be polynomials of order $2d$ and assume that the following conditions hold:

- $R(0) - \varepsilon I \succeq 0$
- $A^T R(0) + R(0) A + \varepsilon I \preceq 0$
- $\Gamma(\tau)$ is a SOS matrix, i.e. there exists $M(\tau)$ such that $\Gamma(\tau) = M(\tau)^T M(\tau)$.
- $-A^T R(\tau) - R(\tau) A + \dot{R}(\tau) - \Gamma(\tau) \tau (T - \tau)$ is a SOS matrix.
- $J^T R(\bar{T}) J - R(0) + \varepsilon I \preceq 0$.

Then, the impulsive system is asymptotically stable under minimum dwell-time \bar{T}, i.e. for any sequence $\{t_k\}_{k \in \mathbb{N}}$ such that $T_k \geq \bar{T}$.
Example 1 - Range dwell-time

Let us consider the system\(^1\)

\[
A = \begin{bmatrix}
-1 & 0.1 \\
0 & 1.2
\end{bmatrix}, \quad J = \begin{bmatrix}
1.2 & 0 \\
0 & 0.5
\end{bmatrix}. \tag{10}
\]

Example 1 - Range dwell-time

Let us consider the system

$$A = \begin{bmatrix} -1 & 0.1 \\ 0 & 1.2 \end{bmatrix}, \quad J = \begin{bmatrix} 1.2 & 0 \\ 0 & 0.5 \end{bmatrix}. \quad (10)$$

<table>
<thead>
<tr>
<th>d_R</th>
<th>T_{min}</th>
<th>T_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.1834</td>
<td>0.4998</td>
</tr>
<tr>
<td>4</td>
<td>0.1824</td>
<td>0.5768</td>
</tr>
<tr>
<td>6</td>
<td>0.1824</td>
<td>0.5776</td>
</tr>
<tr>
<td>Periodic case</td>
<td>0.1824</td>
<td>0.5776</td>
</tr>
</tbody>
</table>

- Finds the theoretical bounds
- Also holds in the aperiodic case

Example 2 - Minimum dwell-time

Let us consider the system

\[
A = \begin{bmatrix} -1 & 0 \\ 1 & -2 \end{bmatrix}, \quad J = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}.
\] (11)

Example 2 - Minimum dwell-time

Let us consider the system \(^1\)

\[
A = \begin{bmatrix} -1 & 0 \\ 1 & -2 \end{bmatrix}, \quad J = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}.
\]

<table>
<thead>
<tr>
<th>(d_R)</th>
<th>(T_{min})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed approach</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Exponential LMI</td>
<td>–</td>
</tr>
<tr>
<td>Periodic case</td>
<td>–</td>
</tr>
</tbody>
</table>

- Non-conservative dwell-time result

Stabilization of impulsive systems
Stabilization problem

System

\begin{align}
\dot{x}(t) &= Ax(t) + B_c u_c(t), \ t \neq t_k \\
x(t) &= Jx(t^-) + B_d u_d(k), \ t = t_k
\end{align}

(12)

where $u_c : \mathbb{R}_{\geq 0} \to \mathbb{R}^{m_c}$ and $u_d : \mathbb{N} \to \mathbb{R}^{m_d}$ are the control inputs.
Stabilization problem

System

\[\begin{align*}
\dot{x}(t) &= Ax(t) + B_c u_c(t), \quad t \neq t_k \\
x(t) &= Jx(t^-) + B_d u_d(k), \quad t = t_k
\end{align*}\] \hfill (12)

where \(u_c : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^{m_c} \) and \(u_d : \mathbb{N} \rightarrow \mathbb{R}^{m_d} \) are the control inputs.

Control law

We consider the following class of control-laws:

\[\begin{align*}
u_c(t_k + \tau) &= K_c(\tau)x(t_k + \tau), \quad \tau \in [0, T_k), \\
u_d(k) &= K_d x(t_k^-)
\end{align*}\] \hfill (13)
Stabilization problem

System

\begin{align}
\dot{x}(t) &= Ax(t) + B_c u_c(t), \quad t \neq t_k \\
x(t) &= Jx(t^-) + B_d u_d(k), \quad t = t_k
\end{align}

(12)

where \(u_c : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^{m_c}\) and \(u_d : \mathbb{N} \rightarrow \mathbb{R}^{m_d}\) are the control inputs.

Control law

We consider the following class of control-laws:

\begin{align}
\begin{aligned}
\quad u_c(t_k + \tau) &= K_c(\tau)x(t_k + \tau), \quad \tau \in [0, T_k), \\
\quad u_d(k) &= K_d x(t_k^-)
\end{aligned}
\end{align}

(13)

Minimum dwell-time case

\[
K_c(\tau) = \begin{cases}
\tilde{K}_c(\tau) & \text{if } \tau \in [0, \bar{T}) \\
\tilde{K}_c(\bar{T}) & \text{if } \tau \in [\bar{T}, T_k)
\end{cases}
\]

(14)

where \(T_k \geq \bar{T}, k \in \mathbb{N}\) and \(\tilde{K}_c(\tau)\) is some matrix function to be determined.
Theorem (Minimum dwell-time)

Assume that there exist a differentiable matrix function $S : [0, \bar{T}] \mapsto \mathbb{S}^n$, $S(\bar{T}) \succ 0$, a matrix function $U_c : [0, \bar{T}] \mapsto \mathbb{R}^{m_c \times n}$, a matrix $U_d \in \mathbb{R}^{m_d \times n}$ and a scalar $\varepsilon > 0$ such that the LMIs

$$\text{Sym}[AS(\bar{T}) + B_c U_c(\bar{T})] \prec 0,$$

$$\text{Sym}[AS(\tau) + B_c U_c(\tau)] + \dot{S}(\tau) \preceq 0$$

and

$$\begin{bmatrix}
-S(0) + \varepsilon I & JS(\bar{T}) + B_d U_d \\
* & -S(\bar{T})
\end{bmatrix} \preceq 0$$

hold for all $\tau \in [0, \bar{T}]$. Then, the closed-loop system is asymptotically stable with minimum dwell-time \bar{T} and suitable controller gains are retrieved using

$$\tilde{K}_c(\tau) = U_c(\tau)S(\tau)^{-1} \quad \text{and} \quad K_d = U_dS(\bar{T})^{-1}. \quad (18)$$
Theorem (Range dwell-time)

Assume that there exist a differentiable matrix function $S : [0, \bar{T}] \mapsto \mathbb{S}^n$, $S(0) \succ 0$, a matrix function $U_c : [0, \bar{T}] \mapsto \mathbb{R}^{m_c \times n}$, a matrix $U_d \in \mathbb{R}^{m_d \times n}$ and a scalar $\varepsilon > 0$ such that the LMIs

$$\text{Sym}[AS(\tau) + B_c U_c(\tau)] + \dot{S}(\tau) \preceq 0$$

(19)

and

$$\begin{bmatrix}
-S(\theta) + \varepsilon I & JS(0) + B_d U_d \\
* & -S(0)
\end{bmatrix} \preceq 0$$

(20)

hold for all $\tau \in [0, T_{\text{max}}]$ and all $\theta \in [T_{\text{min}}, T_{\text{max}}]$. Then, the closed-loop system is asymptotically stable with range dwell-time $[T_{\text{min}}, T_{\text{max}}]$ and suitable controller gains are retrieved using

$$\hat{K}_c(\tau) = U_c(\tau)S(\tau)^{-1} \quad \text{and} \quad K_d = U_dS(0)^{-1}.$$
Example

Let us consider the system with matrices

\[
A = \begin{bmatrix}
1 & 0 \\
1 & 2
\end{bmatrix}, \quad B = \begin{bmatrix}
1 \\
0
\end{bmatrix} \quad \text{and} \quad J = \begin{bmatrix}
1 & 1 \\
1 & 3
\end{bmatrix}
\] (22)

- We want to compute \(\tilde{K}_c(\tau) \) such that the minimum dwell-time is, at most, \(\tilde{T} = 0.1 \).
Let us consider the system with matrices

\[
A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \text{and} \quad J = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}
\] (22)

- We want to compute \(\tilde{K}_c(\tau) \) such that the minimum dwell-time is, at most, \(\bar{T} = 0.1 \).
- We obtain

\[
\tilde{K}_c(\tau) = \frac{1}{\text{den}(\tau)} \begin{bmatrix} 1.4750481 + 3.2714889\tau - 41.011914\tau^2 \\ 3.9063911 - 1.6733059\tau - 37.472443\tau^2 \end{bmatrix}^T
\]

where \(\text{den}(\tau) = -0.19767438 + 0.78454217\tau + 7.6562219\tau^2 \).
Let us consider the system with matrices

\[A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \text{and} \quad J = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix} \] \quad (22)

- We want to compute \(\tilde{K}_c(\tau) \) such that the minimum dwell-time is, at most, \(\bar{T} = 0.1 \).
“Applications”
Switched systems

A linear switched system is a system of the form

\[\dot{x}(t) = A_{\sigma(t)}x(t), \quad x_0 \in \mathbb{R}^n, \quad t \geq 0 \tag{23} \]

where \(\sigma : \mathbb{R}_{\geq 0} \rightarrow \{1, \ldots, N\} \) is the switching signal.
Switched systems

A linear switched system is a system of the form

$$\dot{x}(t) = A_{\sigma(t)}x(t), \ x_0 \in \mathbb{R}^n, \ t \geq 0$$

(23)

where $\sigma : \mathbb{R}_{\geq 0} \rightarrow \{1, \ldots, N\}$ is the switching signal.

Impulsive system formulation

$$\begin{align*}
\dot{\tilde{x}}(t) &= \text{diag}\{A_1, \ldots, A_N\}\tilde{x}(t), \ \tilde{x}_0 = e_1 \otimes x_0, \ t \geq 0 \\
\tilde{x}(t) &= (e_j^T e_i) \otimes I_n, \ i, j = 1, \ldots, N, \ i \neq j
\end{align*}$$

(24)

- Reset system with multiple reset maps
- The method can be applied and leads to the conditions discussed in\(^1\) when using block-diagonal Lyapunov functions

\(^2\) C. Briat. Convex conditions for robust stabilization of uncertain switched systems with guaranteed minimum and mode-dependent dwell-time, *Systems & Control Letters*, 2015a
Convex conditions for minimum dwell-time

Theorem (Minimum Dwell-Time)

Let us consider a switched system with matrices \(\{A_1, \ldots, A_N\} \). Then, the following statements are equivalent:

(a) There exist matrices \(P_i \in \mathbb{S}_+^n, i = 1, \ldots, N \), such that the LMIs

\[
A_i^T P_i + P_i A_i < 0 \quad \text{and} \quad e^{A_i^T \bar{T}} P_i e^{A_i \bar{T}} - P_j < 0
\]

hold for all \(i, j = 1, \ldots, N, i \neq j \).
Theorem (Minimum Dwell-Time)

Let us consider a switched system with matrices \(\{A_1, \ldots, A_N\} \). Then, the following statements are equivalent:

(a) There exist matrices \(P_i \in \mathbb{S}_+^n \), \(i = 1, \ldots, N \), such that the LMIs

\[
A_i^T P_i + P_i A_i < 0 \quad \text{and} \quad e^{A_i^T T} P_i e^{A_i T} - P_j < 0
\]

hold for all \(i, j = 1, \ldots, N, i \neq j \).

(b) There exist differentiable matrix functions \(R_i : [0, \bar{T}] \mapsto \mathbb{S}^n \), \(R_i(0) > 0 \), \(i = 1, \ldots, N \), and a scalar \(\varepsilon > 0 \) such that the LMIs

\[
A_i^T R_i(0) + R_i(0) A_i < 0
\]

\[
A_i^T R_i(\tau) + R_i(\tau) A_i - \dot{R}_i(\tau) \preceq 0 \quad \text{and} \quad R_i(\bar{T}) - R_j(0) + \varepsilon I \preceq 0
\]

hold for all \(\tau \in [0, \bar{T}] \) and for all \(i, j = 1, \ldots, N, i \neq j \).
Theorem (Minimum Dwell-Time)

Let us consider a switched system with matrices \(\{A_1, \ldots, A_N\} \). Then, the following statements are equivalent:

(a) There exist matrices \(P_i \in S^n_{>0}, i = 1, \ldots, N \), such that the LMIs

\[
A_i^T P_i + P_i A_i \prec 0 \quad \text{and} \quad e^{A_i T} P_i e^{A_i \bar{T}} - P_j \prec 0
\]

hold for all \(i, j = 1, \ldots, N, i \neq j \).

(b) There exist differentiable matrix functions \(R_i : [0, \bar{T}] \to S^n, R_i(0) \succ 0 \), \(i = 1, \ldots, N \), and a scalar \(\varepsilon > 0 \) such that the LMIs

\[
A_i^T R_i(0) + R_i(0) A_i \prec 0
\]

\[
A_i^T R_i(\tau) + R_i(\tau) A_i - \dot{R}_i(\tau) \preceq 0 \quad \text{and} \quad R_i(\bar{T}) - R_j(0) + \varepsilon I \preceq 0
\]

hold for all \(\tau \in [0, \bar{T}] \) and for all \(i, j = 1, \ldots, N, i \neq j \).

Moreover, when one of the above statements holds, the switched system is asymptotically stable under minimum dwell-time \(\bar{T} \), i.e. for any sequence \(\{t_k\}_{k \in \mathbb{N}} \) such that \(T_k \geq \bar{T} \).
System
Let us consider now the continuous-time system

\[\dot{x}(t) = Ax(t) + Bu(t) \]

(25)

where \(x \in \mathbb{R}^n \) and \(u \in \mathbb{R}^m \) are the state of the system and the control input, respectively.
System

Let us consider now the continuous-time system

$$\dot{x}(t) = Ax(t) + Bu(t)$$ \hspace{1cm} (25)

where $x \in \mathbb{R}^n$ and $u \in \mathbb{R}^m$ are the state of the system and the control input, respectively.

Controller

The control input is assumed to be computed from a sampled-data state-feedback control law given by

$$u(t) = K_1 x(t_k) + K_2 u(t_{k-1}), \quad t \in [t_k, t_{k+1})$$ \hspace{1cm} (26)

where $K_1 \in \mathbb{R}^{m \times n}$ and $K_2 \in \mathbb{R}^{m \times m}$ are the control gains to be determined.
Sampled-data systems

System
Let us consider now the continuous-time system

\[\dot{x}(t) = Ax(t) + Bu(t) \]

(25)

where \(x \in \mathbb{R}^n \) and \(u \in \mathbb{R}^m \) are the state of the system and the control input, respectively.

Controller
The control input is assumed to be computed from a sampled-data state-feedback control law given by

\[u(t) = K_1 x(t_k) + K_2 u(t_{k-1}), \ t \in [t_k, t_{k+1}) \]

(26)

where \(K_1 \in \mathbb{R}^{m \times n} \) and \(K_2 \in \mathbb{R}^{m \times m} \) are the control gains to be determined.

Objectives
Find a control law of the form (26) such that the closed-loop system is robustly stable for all sampling-periods in the range \([T_{min}, T_{max}]\).
Any sampled-data system can be equivalently reformulated as an impulsive system:

\[
\begin{bmatrix}
\dot{x}(t) \\
\dot{z}(t)
\end{bmatrix} = \begin{bmatrix}
A & B \\
0 & 0
\end{bmatrix} \begin{bmatrix}
x(t) \\
z(t)
\end{bmatrix}, \quad t \neq t_k
\]

\[
\begin{bmatrix}
x(t) \\
z(t)
\end{bmatrix} = \begin{bmatrix}
I & 0 \\
K_1 & K_2
\end{bmatrix} \begin{bmatrix}
x(t^-) \\
z(t^-)
\end{bmatrix}, \quad t = t_k
\]

where \(z(t) = u(t_k), \quad t \in [t_k, t_{k+1}) \).

Let \(\bar{J} = J_0 + B_0 K \) where

\[
J_0 = \begin{bmatrix}
I & 0 \\
0 & 0
\end{bmatrix}, \quad B_0 = \begin{bmatrix}
0 \\
I
\end{bmatrix} \quad \text{and} \quad K = \begin{bmatrix}
K_1 & K_2
\end{bmatrix}.
\]
Theorem (Aperiodic sampled-data systems)

The following statements are equivalent:

(a) There exists a control law of the form (26) that quadratically stabilizes the system (25) for any aperiodic sampling instant sequence \(\{t_k\} \) with dwell-time \(T_k \in [T_{\text{min}}, T_{\text{max}}] \).
Theorem (Aperiodic sampled-data systems)

The following statements are equivalent:

(a) There exists a control law of the form (26) that quadratically stabilizes the system (25) for any aperiodic sampling instant sequence \(\{t_k\} \) with dwell-time \(T_k \in [T_{\text{min}}, T_{\text{max}}] \).

(b) There exist a differentiable matrix function \(R : [0, T_{\text{max}}] \mapsto S^{n+m}, S(0) \succ 0 \), a matrix \(Y \in \mathbb{R}^{m \times (n+m)} \) and a scalar \(\varepsilon > 0 \) such that the conditions

\[
\bar{A}(\tau)S(\tau) + S(\tau)\bar{A}(\tau)^T + \dot{S}(\tau) \preceq 0
\]

and

\[
\begin{bmatrix}
-S(\theta) + \varepsilon I & J_0S(0) + B_0Y \\
* & -S(0)
\end{bmatrix} \preceq 0
\]

hold for all \(\tau \in [0, T_{\text{max}}] \) and all \(\theta \in [T_{\text{min}}, T_{\text{max}}] \).

Moreover, when this statement holds, a suitable stabilizing control gain can be obtained using the expression \(K = YS(0)^{-1} \).
Example 1

Let us consider the sampled-data system (25) with matrices

\[A = \begin{bmatrix} 0 & 1 \\ 0 & -0.1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 \\ 0.1 \end{bmatrix}. \] (31)
Example 1

Let us consider the sampled-data system (25) with matrices

\[
A = \begin{bmatrix} 0 & 1 \\ 0 & -0.1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 \\ 0.1 \end{bmatrix}.
\]

(31)

- Fixed control law: \(K_1 = \begin{bmatrix} -3.75 \\ -11.5 \end{bmatrix} \) and \(K_2 = 0 \).

<table>
<thead>
<tr>
<th>(d)</th>
<th>(T_{\text{max}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed result</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td>(Fridman et al., 2004)</td>
<td>–</td>
</tr>
<tr>
<td>(Naghshtabrizi et al., 2008)</td>
<td>–</td>
</tr>
<tr>
<td>(Fridman, 2010)</td>
<td>–</td>
</tr>
<tr>
<td>(Liu et al., 2010)</td>
<td>–</td>
</tr>
<tr>
<td>(Seuret, 2012)</td>
<td>–</td>
</tr>
<tr>
<td>(Seuret and Peet, 2013)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
Example 1

Let us consider the sampled-data system (25) with matrices

\[A = \begin{bmatrix} 0 & 1 \\ 0 & -0.1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 \\ 0.1 \end{bmatrix}. \]

(31)

- Designed control law for some given \([T_{min}, T_{max}]\).

<table>
<thead>
<tr>
<th>(T_{min})</th>
<th>(T_{max})</th>
<th>(K_1)</th>
<th>(K_2)</th>
<th>(d_R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>10</td>
<td>-0.1145</td>
<td>-0.8088</td>
<td>-0.0024</td>
</tr>
<tr>
<td>0.001</td>
<td>50</td>
<td>-0.0202</td>
<td>-0.1560</td>
<td>-0.0030</td>
</tr>
<tr>
<td>0.001</td>
<td>10</td>
<td>-0.0310</td>
<td>-0.3222</td>
<td>0</td>
</tr>
<tr>
<td>0.001</td>
<td>50</td>
<td>-0.0259</td>
<td>-0.2726</td>
<td>0</td>
</tr>
</tbody>
</table>
Example 2

- Let us consider the following sampled-data system (25) with matrices

\[
A = \begin{bmatrix}
0 & 1 \\
-2 & 0.1
\end{bmatrix}
\quad \text{and} \quad
B = \begin{bmatrix}
0 \\
1
\end{bmatrix}.
\]

(32)

- Let \(K_1 = \begin{bmatrix} 1 & 0 \end{bmatrix} \) and \(K_2 = 0 \).

<table>
<thead>
<tr>
<th>(d_R)</th>
<th>Proposed result</th>
<th>(Seuret, 2012)</th>
<th>(Seuret and Peet, 2013)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{min})</td>
<td>4 \quad 6</td>
<td>0.4 \quad 0.4</td>
<td>1.6316 \quad 1.8270</td>
</tr>
<tr>
<td>(T_{max})</td>
<td>1.251 \quad 1.828</td>
<td>1.820 \quad 1.828</td>
<td></td>
</tr>
</tbody>
</table>
Concluding remarks
Concluding statements

- Robust stability under minimum and range dwell-time
- Robust stabilization by state feedback possible
- Easily extensible to the case of homogeneous Lyapunov functions (necessity?)

Possible extensions

- Switched systems\(^1\), stochastic systems\(^2\), LPV systems (PC parameters\(^3\))
- Dynamic output feedback? There is hope… (according to some trustable people)
- Nonlinear systems (low hanging fruit, just got a paper to review yesterday where the authors seem to do that)
- Similar ideas for delay systems (I start to have some ideas on how to do…)

\(^1\) C. Briat. Convex conditions for robust stabilization of uncertain switched systems with guaranteed minimum and mode-dependent dwell-time, *Systems & Control Letters*, 2015a

\(^2\) C. Briat. Stability analysis and stabilization of stochastic linear impulsive systems – applications to sampled-data systems, *submitted to Automatica*, 2015c

\(^3\) C. Briat. Stability analysis and control of LPV systems with piecewise constant parameters, *Systems & Control Letters*, 2015b
Thank you for your Attention